Medium
Given an array of positive integers nums
and a positive integer target
, return the minimal length of a contiguous subarray [numsl, numsl+1, ..., numsr-1, numsr]
of which the sum is greater than or equal to target
. If there is no such subarray, return 0
instead.
Example 1:
Input: target = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: The subarray [4,3] has the minimal length under the problem constraint.
Example 2:
Input: target = 4, nums = [1,4,4]
Output: 1
Example 3:
Input: target = 11, nums = [1,1,1,1,1,1,1,1]
Output: 0
Constraints:
1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 105
Follow up: If you have figured out the O(n)
solution, try coding another solution of which the time complexity is O(n log(n))
.
function minSubArrayLen(target: number, nums: number[]): number {
let i = 0
let j = 0
let sum = 0
let min = Number.MAX_SAFE_INTEGER
while (j < nums.length) {
sum += nums[j]
if (sum >= target) {
while (i <= j) {
if (sum - nums[i] >= target) {
sum -= nums[i]
i++
} else {
break
}
}
min = Math.min(min, j - i + 1)
}
j++
}
return min === Number.MAX_SAFE_INTEGER ? 0 : min
}
export { minSubArrayLen }